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Abstract—This work investigates the performance of an energy
harvesting communications system. This system consists of a
transmitter and a receiver. The transmitter is equipped with
an infinite buffer to store data, and energy harvesting capabil-
ity to harvest renewable energy and store it in a finite battery.
The goal is to maximize the expected cumulative throughput of
such systems. The problem of finding an optimal power allo-
cation policy is formulated as a Markov decision process. Two
cases are considered based on the availability of statistical knowl-
edge about the channel gain and energy harvesting processes.
When this knowledge is available, an algorithm is designed to
maximize the expected throughput, while reducing the complex-
ity of traditional methods (e.g., value iteration). This algorithm
exploits instant knowledge about the channel, harvested energy,
and current battery level to find a near-optimal policy. For the
second scenario, when the statistical knowledge is unavailable,
reinforcement learning is used. Two different exploration algo-
rithms, convergence-based and the epsilon-greedy algorithms, are
used. Simulations and comparisons with conventional algorithms
show the effectiveness of the look-ahead algorithm when the
statistical knowledge is available, and the effectiveness of rein-
forcement learning in optimizing the system performance when
this knowledge is unavailable.

Index Terms—Energy harvesting communications, Markov
decision process, reinforcement learning, exploration,
exploitation.

I. INTRODUCTION

E
NERGY harvesting (EH) converts ambient energy to

electric energy. It has emerged as an efficient solution

for providing sustainable energy for certain systems, such as

wireless communications systems [1]. EH devices are charac-

terized by several attractive attributes, such as the ability to be

deployed in hard-to-reach areas, and offering reduced carbon

emissions [2].

To implement an efficient EH communications system,

two important, but contradictory goals should be achieved,

which are prolonging the system’s lifetime and maximizing its
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throughput. This can be accomplished by optimizing the use

of available resources, which is considered the main challenge

facing EH communications [3]. This is due to the variation of

the amount of energy that can be harvested over time [1]. To

overcome this challenge, it is important to design power allo-

cation policies that adapt to time-variant EH and the channel

fading processes.

Designing power allocation policies depends on the avail-

able knowledge at the EH node about the environment (i.e.,

channel fading and EH processes). This available knowl-

edge can be classified into three groups. The first one is the

non-causal knowledge. This assumption insures an optimal

allocation policy. The second group is the statistical knowl-

edge, where the EH and the channel fading processes are

stationary random processes. The last group is the causal

knowledge, which is the most realistic one. This means

that at every time slot, EH nodes have only information

about the current and past harvested energy and channel

gains [3].

A. Energy Harvesting Communications Systems

With Non-Causal Knowledge

EH communications systems with non-causal knowledge

have been widely discussed [4]–[9]. Management approaches

in this case are called offline approaches, where the amounts

of harvested energy and their arrival times are known at the

beginning of the communication session [10]. Despite the dif-

ficulty of considering this assumption in reality, it is used to

find the upper bound performance [4].

In [4], the problem of maximizing the throughput of EH sin-

gle hop communication system with non-causal knowledge is

investigated. The authors prove that this problem can be mod-

eled as the minimization of the time required for transmitting

a fixed amount of data. The problem of identifying the offline

transmission policy for EH communications system with coop-

erative relay is discussed in [5]. The goal is to maximize the

amount of data received by the destination within a given

time interval. In the proposed model, both the transmitter and

the relay are EH nodes. The model is investigated under two

scenarios, which are half-duplex and full-duplex relaying for

communications. In [9], the problem of finding the offline

transmission power allocation for EH communications system

with multiple half-duplex relays is studied. The problem is for-

mulated as a convex optimization problem to find the optimal

power allocation for the goal of maximizing the amount of

delivered data by a deadline.
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B. Energy Harvesting Communications Systems With

Statistical Knowledge

For modeling more realistic EH communications

systems, it is assumed that the EH, and data generation

processes are discrete Markov processes with full statistical

knowledge [11], [12], [13]. A Markov decision process

(MDP) is characterized by its ability to provide a suitable

mathematical framework for modeling decision-making

problems when the system has processes that follow the

Markov property [12]. Due to its efficiency, MDP has been

adopted to deal with a number of problems considering

EH [11], [12], [13], [14]. In [12], a point-to-point wireless

communication system is studied, where the transmitter is

able to harvest energy and store it in a rechargeable battery.

The goal is to maximize the expected total transmitted data

during the activation time of the transmitter. The problem is

formulated as a discounted MDP problem. The state space

consists of the battery state, the size of the packet to be

transmitted, the current channel state, and the amount of

energy needed for transmitting this packet successfully. At

the beginning of each time slot, the transmitter makes a

binary decision, whether to drop or to transmit the packet

based on the current conditions. In this work, policy iteration

(PI) is employed to solve the problem. In [14], an CRN

with a secondary user that is capable of harvesting RF

energy is investigated. In this model, the secondary user

cannot execute EH and data transmission simultaneously,

since it has only one interface. As a result, at the beginning

of each time slot, the secondary user has to select either

harvesting or transmitting. The mode management problem

is formulated as an MDP. The primary channel is modeled

as a three-state Markov chain, these states are occupied,

idle with bad quality, and idle with good quality. The state

space of the modeled MDP is a combination of the primary

channel states and the secondary user energy levels. The

action space consists of two actions, which are to harvest or

to transmit. Value iteration (VI) is used to find the optimal

policy, and the performance is compared with the greedy

policy.

While traditional methods such as VI are able to find the

optimal policy for MDP problems [15], [16], the complex-

ity to find optimal solution grows as the number of states

and actions increases. The complexity of finding the optimal

solution using VI is O(|A|.|S|2), where A is the set of

actions, S is the set of states for the problem [17]. This has

encouraged finding alternative methods for solving MDP prob-

lems, especially in the case of having large numbers of states

and actions [11], [14], [18], [19]. The authors in [11] con-

sider a network of objects equipped with energy-harvesting

active networked tags (EnHANTs). The goal is to design an

optimal transmission strategy for the EnHANTs to adapt to

changes in the amounts of harvested energy and the iden-

tification request. The problem is formulated as an MDP.

Modified policy iteration (MPI) method [20] is employed to

solve the problem and to overcome the complixity of exhaus-

tive search. In [19], the idea of using a mobile energy gateway

is investigated, which has the capability of receiving energy

from a fixed charging facility, as well as transferring energy to

other users. The goal is to maximize the utility by taking the

optimal action of energy charging/transferring. The problem

is formulated as an MDP. The authors prove that there is

a threshold structure of the optimal policy with respect to

the system states, which helps in obtaining the optimal pol-

icy especially for MDPs with large numbers of states. The

goal of determining these thresholds is to select immediate

optimal actions based on the current state instead of using the

traditional methods such as VI.

C. Energy Harvesting Communications Systems With Causal

Knowledge

In the previous two frameworks, a priori knowledge, either

deterministic or statistical, about the EH process is required.

However, in more practical scenarios, this knowledge might

be unavailable, in which case reinforcement learning (RL) can

be used to improve the performance of such systems [10]. RL

enables an autonomous agent to select optimized actions at

different states in an unknown environment [21], [22].

In [3], [10], [23], [24] the problem of optimizing EH com-

munications systems is investigated using RL. In this context,

at any time, the EH nodes have only current local knowl-

edge of the EH process. The authors aim to find a power

allocation policy that maximizes the throughput. In these two

works, the RL algorithm, which is known as the state-action-

reward-state-action (SARSA), is used to evaluate the taken

actions. On the other hand, the ǫ-greedy exploration algorithm

is used to balance between exploring and exploiting available

actions.

In [12], a point-to-point communications system is inves-

tigated. The transmitter is capable of harvesting energy and

storing it in a rechargeable battery. The energy and data

arrivals are formulated as Markov processes. In this work, the

authors use Q-learning to find the optimal transmission policy

when the system does not have a priori information about

the Markov processes governing the system. They use the

ǫ-greedy exploration algorithm to balance between exploration

and exploitation.

D. The Contribution

In this paper, our goal is to provide efficient algorithms

for dealing with two scenarios. The first scenario consid-

ers the availability of the statistical knowledge about the

underlying MDP model, while the second one assumes

unavailability of this knowledge. For the first scenario,

we designed an algorithm utilizing the available statistical

knowledge to optimize the system performance. The goal

of this algorithm is to maximize the expected throughput

while avoiding the complexity of traditional methods such

as VI and PI.

In the second scenario RL is used. SARSA is used as a

learning algorithm, and two exploration algorithms are used to

balance between exploration and exploitation. The first algo-

rithm is developed in this paper and called convergence-based

algorithm. The second exploration algorithm is the widely
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Fig. 1. Point-to-point communication system with an energy harvesting
source.

used algorithm, which is called ǫ-greedy algorithm [21].

The convergence-based algorithm tries to balance between

exploration and exploitation using two parameters, which are

the exploration time threshold τ , and the action-value func-

tion convergence error ζ. In the first session of learning, the

agent tries to evaluate available actions, and then it exploits the

best resulting policy during the remaining time. On the other

hand, ǫ-greedy tries to find a balance point between explo-

ration and exploitation through the exploration probability ǫ.

The motivation behind introducing convergence-based algo-

rithm is to provide a parameter evaluating actions accurately

using ζ, which is unavailable in ǫ-greedy algorithm. ζ enables

systems to make correct decisions accurately, and increase the

cumulative discounted return.

Finally, the performance of the proposed algorithms is com-

pared with some algorithms, and shows the superiority of the

proposed algorithms with their competitors.

E. The Paper Organization

The remainder of the paper is organized as follows.

Section II describes the proposed communications system

model. Then, the problem is formulated in Section III-A.

The problem is reformulated as an MDP in Section III-B.

Section IV presents the look-ahead algorithm, which is used

when the dynamics of the underlying model are available.

Section V discusses two exploration algorithms for RL to

optimize the system performance when the knowledge about

the underlying model is unavailable. Numerical simulation

results are presented in Section VII. Finally, the paper is

concluded in Section VIII.

II. SYSTEM MODEL

In this section, a point-to-point communication system that

consists of a source (S) and a destination (D) is considered.

As illustrated in Fig. 1, each of S and D is equipped with an

infinite buffer to store data. S has the capability of harvesting

solar energy and storing it in a finite battery. We consider a

time slotted system with equal length time slots, where each

slot has a duration of Tc . For this system, the energy can be

harvested and stored as an integer multiple of a fundamental

unit. Let the maximum capacity of the battery be Bmax. Bi

represents the battery level of S at the beginning of time slot i,

where Bi ∈ B � {b1, b2, . . . , bNb
}, Nb is the number of

elements in B, and bNb
= Bmax.

The energy harvesting and channel gain processes are

modeled as two independent Markov chains. Based on the

current technologies, the amount of energy to be harvested

Ei can be computed precisely [25]. During time slot i, the

source harvests Ei units from solar sources, where Ei ∈
En � {e1, e2, . . . , eNE

}, and NE represents the number of

elements in En . pEn
(e ′|e) is the transition probability of har-

vested energy going from state e to state e ′ during one step

transition. Let Hi be the channel state during time slot i,

where Hi ∈ H � {h1, h2, . . . , hNH
}, and NH is the num-

ber of elements in H. pH(h ′|h) is the transition probability

for the channel going from state h to state h ′ during one

time slot.

Let PTx
i be the transmission power during time slot i,

and Tc is the transmission duration, which is constant dur-

ing all time slots and equals 1 second. Since the source has

causal knowledge about its environment, PTx
i is a function

of Ei , Bi , and Hi . PTx
i ∈ PTx � {pTx

1 , pTx
2 , . . . , pTx

Np
},

where Np is the number of elements in PTx . In the proposed

scheme, selecting PTx
i fulfills the Markov property, so the

problem of optimizing the transmission power can be modeled

as an MDP [21]. In this model, energy consumption is consid-

ered only due to data transmission, and it does not take into

account any other energy consumption, such as processing,

circuitry, etc.

The received signal at the destination D during the ith time

slot is given as

yi =
√

PTx
i Hixi + ni , i = 1, . . . ,M (1)

where xi is the transmitted signal by S, respectively.

ni is additive Gaussian noise with zero-mean and noise

variance σ2
n .

In this context, the harvested energy is managed using

harvest-store-use scheme. Using this scheme, harvested energy

is stored partially or totally in a battery before using it.

This scheme is characterized by its suitability for systems

equipped with energy storage devices. It enables these

systems to improve their performance by storing the harvested

energy and using it when the channel gains are relatively

good [26], [27].

III. PROBLEM FORMULATION

A. Throughput Maximization Problem

In this section, we formulate the problem of maximizing

the throughput by optimizing the transmission power over an

infinite horizon. Two scenarios are taken into account. The

first one considers the existence of statistical knowledge about

the EH and channel gain processes, while the other consid-

ers the case of having only causal knowledge about these

processes.

Due to lack of information about the harvestable energy

and the channel gains in the future, the goal is to maximize

the expected discounted return, where the discounted return

following time t, Gt , is given by

Gt =

T−1
∑

i=t

γi−tRi+1 (2)
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where t is the starting time for collecting a sequence of

rewards, T is a final time step of an episode, and γ ∈ (0, 1)
is the discount factor, which is used to weight the value (i.e.,

the importance) of the received data over time. It is a mea-

sure for the importance of transmitting data at the current time

compared to transmitting the same data in the future, when it

might not be important to the destination. Ri+1 is the reward

(i.e., the amount of received data) at time i + 1 resulting from

transmission using PTx
i

Ri+1 = Tc log2

(

1 +
PTx

i |Hi |
2

σ2
n

)

(3)

where σ2
n is the noise variance.

The energy causality constraints at the source, which is to

ensure that the source cannot use more energy than its current

battery level, and is given by

Tc PTx
i ≤ Bi , i = t , . . . ,T − 1 (4)

Battery overflow constraint for the source, which is a rule

for updating the energy level in the source’s battery. It is a

function of the battery level, transmission energy, harvested

energy during time slot i, which is given by

Bi+1 = min
{

Bi + Ei − Tc PTx
i ,Bmax

}

, i = t , . . . ,T − 1

(5)

Finally, PTx
i , and Bi should satisfy the following

constraints

PTx
i ,Bi ≥ 0, i = t , . . . ,T − 1 (6)

Bi ≥ 0, i = t , . . . ,T − 1 (7)

The optimization problem that maximizes the expected

discounted return over an infinite horizon can now be

formulated as

max
{PTx

i }
lim

T→∞
E[Gt ] (8)

such that for i = t , . . . ,T − 1,

PTx
i Tc ≤ Bi ,

Bi+1 = min{Bi + Ei − Tc PTx
i ,Bmax},

PTx
i ≥ 0,

Bi ≥ 0. (9)

B. MDP Reformulation

Since the exact values of the harvested energy levels and

channel gains are unknown in the future, this problem cannot

be solved using convex optimization techniques although the

problem is convex.

MDP is characterized by its ability to provide a framework

for decision making problems, where outcomes are partly ran-

dom and partly under control. The mathematical model of

an MDP is defined by the following principles: (a) A set of

states S. (b) A set of actions A. (c) The transition probability

model p(s ′|s, a), which is the probability of reaching state

s ′ ∈ S given that action a ∈ A is taken at state s ∈ S. (d)

The immediate reward, r(s, a, s ′), yielded by taking action a

at state s and then transiting to state s ′ [21].

The problem in (8) is reformulated as an MDP [28], where

each state s is defined by three elements, which are the bat-

tery level, channel gain, and amount of harvested energy (i.e.,

s = (b, h, e)). The action a is defined as the selected trans-

mission power pTx . Each state s has a subset of actions PTx
s

such that PTx
s ∈ PTx . Battery levels evolve according to

b′ = min{b + e − Tc pTx ,Bmax} (10)

The transition probability p(s ′|s, pTx ) is given by

p
(

s ′|s, pTx
)

=

{

pEn
(e ′|e) · pH(h ′|h), if (10) is satisfied

0, otherwise

(11)

where the channel gain and EH processes are independent.

The immediate reward, which is the amount of received data

resulting from taking action pTx at state s is given by

r
(

s, pTx
)

= Tc log2

(

1 +
pTx |h|2

σ2
n

)

(12)

In the proposed system, the immediate reward is a function

of the current state s and the selected action pTx only, and it

is independent of the next state s ′. It is important to note the

difference between (3) and (12). Equation (3) is the resulting

data rate in terms of the state and action at time i, while (12)

represents the resulting data rate in terms of the state and

action spaces of the underlying MDP.

A deterministic policy π maps states into the transmission

power taken at each state, π(·) : s → pTx ,∀s . The objective

function is to maximize the expected cumulative throughput

in (2) by finding an optimal policy π∗.

To evaluate different policies, value functions (state-value

function vπ(s) and action-value function qπ(s, a)) can be

used. The optimal policy π∗ has action-value function that

is better than or equal to any other policy π for all states (i.e.,

qπ∗(s, pTx ) ≥ qπ(s, pTx ), ∀s ∈ S) [12].

In this work, two problems are studied. The first one is

when the source has causal knowledge about the states (i.e.,

knowledge about past and current states), the available actions

at the current state, the immediate reward given an action, and

the transition probabilities between states. The second problem

is the same as the first but when the transition probabilities

are unavailable.

Two approaches are used to deal with the considered

problems. The first one is the look-ahead algorithm for EH

communications, which is proposed to solve the first problem.

This algorithm utilizes the available statistical knowledge to

maximize the objective function. It is designed to avoid the

complexity of the available methods used for solving such

problems, such as VI. The second approach is RL, where

the transition probabilities between states are unavailable. Two

exploration algorithms for RL are used to evaluate and improve

the performance of the proposed system.
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IV. LOOK-AHEAD POLICY FOR EH COMMUNICATIONS

(KNOWN UNDERLYING MODEL)

This proposed algorithm is a two-step look-ahead algo-

rithm used when the statistical knowledge about the underlying

model is available. This algorithm is broken down into a

number of stages, as follows: Firstly, the overflow energy is

computed. Then, the throughput using different transmission

power levels are computed and compared. Finally, selecting a

transmission power level based on the comparison from the

previous step.

A. Two-Step Look-Ahead Throughput

The two-step look-ahead throughput is derived from the

Bellman equation [21], and it is given by

Rl

(

s, pTx
)

= r
(

s, pTx
)

+ γ
∑

s′

p
(

s ′|s, pTx ′
)

r
(

s ′, pTx ′
)

= Tc log2

(

1 +
pTx |h|2

σ2
n

)

+ γ
∑

s′

p
(

s ′|s, pTx ′
)

× Tc log2

(

1 +
pTx ′

|h ′|2

σ2
n

)

(13)

In this equation, the state value function v in the Bellman

equation is replaced by the immediate reward r for one step

only. This equation consists of two parts, the first one is the

resulting throughput from using pTx in the current state s,

while the second part is the expected throughput resulting from

using pTx ′

in the next slot s ′.

B. Look-Ahead Throughput Algorithm

The overflow energy is defined as the amount of energy that

could be lost due to reaching the battery’s maximum capac-

ity. This results from harvesting, not utilizing the available

energy, and using a limited size battery. Overflow situations

should be avoided since they are not optimal, where a higher

throughput can always be achieved if the overflow energy is

utilized.

Given b, e, and Bmax, the overflow energy is written as

eovf = max{b + min{e,Bmax} − Bmax, 0} (14)

In each time slot, the goal is to use at least this amount

of energy regardless of the channel state. This is because this

energy will be lost if it is not utilized.

The proposed algorithm depends on computing the two-

step look-ahead throughput for different energy levels at each

state. These energy levels are integer multiples of a funda-

mental energy unit. The first step is to find the set of all

possible energy levels, Λ, that can be used at each state s.

Λ = {λ1, . . . , λNΛ
}, where λ1 = eovf , λNΛ

= b, and NΛ is

the total number of energy levels in Λ. ΛM is a set of M ran-

dom energy levels selected from Λ, 1 ≤ M ≤ NΛ. The optimal

scenario is to consider all energy levels between the maximum

available energy in the battery and the overflow energy at each

state, i.e., ΛM = Λ. When the number of energy levels within

this range is relatively small compared with the system’s capa-

bility, all levels should be considered. Otherwise, the number

Algorithm 1 Look-Ahead Throughput Algorithm

1: for each s ∈ S do
2: Compute the expected overflow energy eovf .
3: Find the set of all available energy levels at s , (i.e., Λ).
4: Sample M random energy levels from Λ, and assign them to

ΛM .
5: for each m ∈ M do
6: Compute Rl(s, (λm/Tc)) using (15).
7: end for
8: λmax ← arg maxλm

[Rl(s, (λm/Tc))], m=1,...,M.

9: pTx ← λmax/Tc .

10: s ← s ′.
11: end for

of levels M to be evaluated should be determined based on

the system’s capability. The two-step look-ahead throughput

for each energy level in ΛM is computed according to

Rl(s, (λm/Tc)) = r(s, (λm/Tc))

+γ
∑

s′

p
(

s ′|s, (b′/Tc)
)

r
(

s ′, (b′/Tc)
)

, m = 1, . . . ,M

(15)

where b′ is the battery level at the next state s ′, which depends

on the used energy at state s (i.e., λm ).

Based on the different values of Rl(s, (λm/Tc)) at state s,

the energy level is selected according to

λmax ← arg max
λm

[Rl(s, (λm/Tc))], m = 1, . . . ,M (16)

where the selected action (i.e., the transmission power) at

state s is λmax/Tc . Algorithm 1 summarizes the proposed

algorithm.

V. REINFORCEMENT LEARNING FOR EH

COMMUNICATIONS (UNKNOWN UNDERLYING MODEL)

This section provides a solution for the second scenario,

where RL is used to handle the challenge of knowledge

unavailability about the channel gain and EH processes.

SARSA learning algorithm is used to evaluate different

actions. The performance of the proposed model is investi-

gated using two different exploration algorithms, which are

the convergence-based algorithm, and the ǫ-greedy algorithm.

A. RL Prediction Methods

In this work, SARSA and Q-learning are used to predict the

action-value function for different state-action pairs. SARSA

is an on-policy updating strategy, which attempts to evaluate

the policy that is used to make decisions. On the other hand,

Q-learning is an off-policy method, where the action-value

function is estimated for the policy that is unrelated to the

policy used for evaluation [21].

Updating in SARSA works as follows. Starting from time

slot i, let the agent be at state s, and the selected action accord-

ing to the current policy π is a. Based on the selected action,

it moves to the next state s ′ and receives a reward r(s, a, s ′).
Using a policy derived from the Q(s, a) (e.g., ǫ-greedy algo-

rithm), an action a ′ is selected to the next state s ′. At this

point, the estimate of the action-value function, Q(s, a), is
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updated using the gained experience. The updating equation

in SARSA is given by [21]

Q(s, a) ← Q(s, a) + α
[

r
(

s, a, s ′
)

+γQ(s ′, a ′) − Q(s, a)
]

(17)

Using Q-learning, actions are assigned as follows. At the

current state, actions are selected according to a policy derived

from Q(s, a) (e.g., ǫ-greedy algorithm), while the greedy action

is assigned to the next state s ′. The updating equation in Q-

learning is given by [21]

Q(s, a) ← Q(s, a) + α

[

r(s, a, s ′) + γ max
b

Q(s ′, b) − Q(s, a)

]

(18)

where 0 < α < 1 refers to the learning rate. This factor

determines the amount of contribution of the newly acquired

information for updating the action-value function. If α = 0,

then the agent will not learn any thing from the acquired

information. On the other hand, if α = 1, the agent will only

consider the newly acquired information [29].

B. RL Exploration Algorithms

This part discusses two exploration algorithms for RL to

deal with the case of knowledge unavailability about the under-

laying model. The exploration algorithms play an essential role

in RL. Their role appears in finding a balance between explo-

ration and exploitation to maximize the cumulative rewards.

The exploitation mode can be defined as using the current

available knowledge to select the best policy to be used. On

the other hand, exploration is known as investigating new poli-

cies in the hope of getting policy that is better than the current

best one [21].

1) The ǫ-Greedy Algorithm: This algorithm [30] uses the

exploration probability ǫ to find a balancing point between

exploration and exploitation modes. This parameter changes

the mode based on its value at each time slot.

In this algorithm, the current best action is selected with

probability 1 − ǫ. On the other hand, a random non-greedy

action is selected with probability ǫ. The ǫ can be either

fixed [21], or with adaptive value during the learning time [10].

In the case of adaptive ǫ-greedy, ǫ takes values that changes

with time. For example, in [10], ǫ is set to e−0.1i , where i

the time slot number. In this case, at the beginning of the ses-

sion, the exploration probability ǫ has large values to increase

the probability of exploration. As time increases, the proba-

bility of exploration decreases and the exploitation probability

increases. This is to increase the opportunity of exploitation at

the end of the session, where most of the policies have been

explored and it is preferred to exploit the best known policy.

2) The Convergence-Based Algorithm: This part presents

our exploration algorithm. It uses two parameters to bal-

ance between exploration and exploitation. The first param-

eter is the action-value function convergence error ζ. The

same action at a state is exploited for a number of iter-

ations until the estimated value of this state-action pair

converges to a value with an error less than or equal

to ζ. The second parameter is the exploration time thresh-

old τ . This parameter controls the exploration process, where

the agent can explore different actions for a τ from the

total available time T, after that, the agent is forced to

exploit the best available policy πbest during the remaining

time [31], [32].

In this algorithm, the first step is to assign random feasible

actions to all available states. Then, for each visited state, the

same action is selected for a time until its estimated value con-

verges to a value determined by ζ. Once the estimated value

of a state-action pair converges to a value with an error less

than or equal to ζ, a new random action is assigned from

uniformly distributed unexplored actions to that state. This

mechanism continues for all states, and stops in two cases:

The first one occurs if all available actions for a states s are

evaluated before reaching τ . At this time, the action with the

best value πbest(s) will be exploited in the future. The sec-

ond case occurs when the available time reaches τ . Then, the

agent suspends exploration, and starts exploiting the best avail-

able policy πbest regardless of exploring all available actions

or not.

Using the SARSA with the convergence-based algorithm,

an action for next state s ′ is selected according to the current

policy π

pTx ′

← π(s ′) (19)

and for the case of integrating the Q-learning and convergence-

based algorithms, an action is assigned to next state s ′

according to

pTx ′

← arg max
a

Q(s ′, a) (20)

Convergence-based algorithm is characterized by a number

of properties that makes it a good candidate compared with the

epsilon-greedy algorithm. These properties are summarized as

follows. Firstly, using convergence-based algorithm, once an

action at a state has been evaluated, and its action-value func-

tion has converged to an unfavorable value, this action will

not be exploited in the future. This is an important prop-

erty that contributes to discarding actions that may reduce

the cumulative discounted return in the future. Secondly, the

convergence-based algorithm starts by evaluating most of the

available actions using ζ, which enables systems to evaluate

different policies accurately. This enables systems to deter-

mine and exploit policies with actual high return. On the other

hand, this parameter is unavailable in epsilon-greedy algo-

rithm, which exploits greedy actions based on their instant

values. Thirdly, using the convergence error ζ, once all avail-

able actions are explored and evaluated (when the numbers

of states and actions are finite and relatively small), and a

suboptimal policy is determined, the exploration process is

terminated. This enables systems to exploit the best result-

ing policy at an early time, which maximizes the cumulative

discounted return significantly, where the effect of the dis-

count factor γ is small. However, this feature is unavailable

in the epsilon-greedy algorithm. Algorithm 2 summarizes the

proposed algorithm.
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Algorithm 2 Convergence-Based Algorithm for estimating π∗

1: Initialize Q0(s, pTx ), ∀s ∈ S, ∀pTx ∈ PTx
s , arbitrarily

2: Initialize the action-value convergence error ζ, the exploration
time threshold τ , and the learning rate α

3: Initialize Qbest(s) = −∞, ∀s ∈ S
4: Initialize the policy π and the current best policy πbest by

random actions ̺ ∈ PTx
s , ∀s ∈ S

πbest(s), π(s) ← ̺, ∀s ∈ S

PTx
s ← PTx

s − ̺ , ∀s ∈ S
5: for each step i of episode do
6: Observe current state S
7: Select action PTx to state S according to the policy π (i.e.,

PTx ← π(S))

8: Observe the immediate reward r(S ,PTx ), and next state S ′

9: Predict Q(S ,PTx ) using a prediction method (e.g., SARSA
or Q-learning)

10: if |Q i (S ,PTx ) − Q i−1(S ,PTx )| ≤ ζ AND i < τ then

11: if Q i (S ,PTx ) ≥ Qbest(S) then

12: Qbest(S) ← Q i (S ,PTx )

13: πbest(S) ← PTx

14: end if
15: if PTx

S �= φ then

16: Update π by selecting a new random action ̺ ∈ PTx
S

to state S
π(S) ← ̺

PTx
S ← PTx

S − ̺
17: else
18: π(S) ← πbest(S)
19: end if
20: else if i ≥ τ then
21: π ← πbest
22: end if
23: S ← S ′

24: end for

VI. COMPLEXITY

Algorithm 1 aims at reducing the complexity of solving

the formulated MDP problem, while approaching the optimal

performance. Using the proposed algorithm, there is no need

to go through all possible policies and select the optimal

one, which is difficult especially when the system has a large

number of actions/states combinations. For the case of using

value iteration to get the optimal solution, the complexity is

O(|A|· |S|2), where A is the set of actions, and S is the set of

states for the problem [17]. On the other hand, the proposed

algorithm has a complexity of O(|S| · |M |), where M is the

number of sampled energy levels that are evaluated at each

state.

For Algorithm 2, it aims at providing an efficient explo-

ration algorithm for RL to improve the learning performance.

This algorithm tries to estimate the values of different state-

action pairs accurately, and then, exploit the best resulting

policy. Let T is the final time step of an episode. The com-

plexity of Algorithm 2 is O(|T |) when SARSA is used as a

prediction method, and O(|A| · |T |) when Q-learning is used.

VII. SIMULATION RESULTS

In this section, the proposed algorithms are evaluated. Then,

the effects of their parameters are investigated. To evalu-

ate the proposed algorithms, three additional approaches are

considered.

• Value iteration (VI) [16].

• Hasty Policy: At each time slot, all available energy is

allocated for data transmission, regardless of previous

experience. The goal is to avoid energy overflow

situations [10].

• Random Policy: In this case, a set of feasible random

transmission power levels is considered, where all levels

are uniformly distributed across their range [10].

Two types of scenarios were considered in the simula-

tion, simple scenarios that consider small numbers of states

and actions, and scenarios with large numbers of states and

actions. For simple scenarios such as in [12], [33], where the

optimal policy can be found easily, VI was used to evaluate the

performance of the proposed algorithms. On the other hand,

the proposed algorithms are compared with the hasty and ran-

dom approaches only in the case of considering large number

of states.

In the numerical analysis, it is assumed that each

time slot is 1 second in duration. The available band-

width BW is 1 MHz, and the noise spectral density is

N0 = 4 × 10−21 W/Hz.

It is also assumed that the S is equipped with solar panels

with an area of 25 cm2 and 10% harvesting efficiency. An

outdoor solar panel can get the benefit of 100 mW/cm2 solar

irradiance under standard testing conditions, and harvesting

efficiency between 5% and 30%, based on the used material

in the panel [34]. It is assumed that the fundamental energy

unit that can be harvested, stored, and transmitted is 0.05 J.

The used parameters were set as follows. The discount fac-

tor γ is set to 0.9, and the learning rate α is selected to be 0.1.

Adaptive ǫ-greedy exploration algorithm is used [10]. For this

algorithm, the exploration probability is set to ǫ = e−0.001i ,

where i is the time slot number in an episode. For the

convergence-based exploration algorithm, ζ is set to 4, and

the τ is set to be 0.8 of the total available time in an episode

(i.e., τ = 0.8T ). For the throughput comparison step in the

look-ahead algorithm, all possible energy levels at each state

are considered, i.e., ΛM = Λ.

It is also assumed that the set of harvested energy lev-

els is En = {0, 0.05, 0.1, 0.15, 0.2, 0.25} J with transition

probability matrix Pe

Pe =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.4011 0.3673 0.1027 0.0899 0.0279 0.0111

0.4072 0.3441 0.1002 0.0973 0.0305 0.0207

0.3966 0.3239 0.1165 0.0860 0.0400 0.0370

0.3796 0.3272 0.1158 0.0782 0.0514 0.0478

0.3612 0.3451 0.1055 0.0837 0.0501 0.0544

0.3711 0.3341 0.1107 0.0801 0.0502 0.0538

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The set of channel gains consists of 11 states that were uni-

formly selected between 0 and −20 dB with random transition

probabilities between the states.

The used battery has a maximum capacity of 12 units.

All results are averaged over 500 runs. The starting state is

selected randomly, where all the states have equal probability

to be the starting state. The convergence-based and ǫ-greedy

algorithms starts learning from the same policy, which is

the Hasty policy. All mentioned parameters were used in all

experiments unless otherwise stated.
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Fig. 2. The discounted return Gt versus time t for different approaches.

A. Comparison With the Upper Bound

In this part, we evaluated the proposed algorithms by com-

paring them with the optimal performance. The VI was used

to find the optimal policy to get the upper bound performance.

The VI along with the look-ahead algorithms need a priori sta-

tistical knowledge about the channel gain and EH processes.

On the other hand, this knowledge is unavailable for the

learning approaches.

In this scenario, the battery maximum capacity Bmax is set

to 2 units. The set of harvested energy is En = {0, 0.05} J

with transition probability matrix Pe

Pe =

[

0.5050 0.4950
0.5215 0.4785

]

The set of channel gains Hn = {0,−10,−20} dB with

transition probability matrix Ph

Ph =

⎡

⎣

0.3946 0.3991 0.2064
0.4145 0.3470 0.2385
0.5524 0.3637 0.0838

⎤

⎦

Fig. 2 shows the discounted return Gt (i.e., the cumulative

discounted received data starting from time t). The cumulative

discounted received data is defined as the amount of valu-

able data received within a given time frame. The discounted

returns of the optimal policy and look-ahead algorithm take

a near-constant pattern all the time. This is due to use one

policy all the time, and the discount factor which bounds the

discounted return to a value. For the learning approaches, in

the beginning of the session, their discounted returns increase

with experience, where these approaches start from hasty pol-

icy. As the time increases, they start taking a near-constant

pattern, which results from learning an optimal policy that

cannot be improved any more, and the discount factor that

bounds the discounted return to a value.

As shown, the upper-bound on the discounted return can be

achieved by exploiting the optimal policy all the time. This

figure also shows that the look-ahead algorithm outperforms

Fig. 3. The discounted return Gt versus time t for different approaches.

the remaining approaches, which is due to exploiting the sta-

tistical knowledge that is available to this approach. It can also

be noticed that the convergence-based algorithm outperforms

the adaptive ǫ-greedy, where the convergence-based algorithm

finds an optimal policy faster than the adaptive ǫ-greedy. The

superiority of the convergence-based algorithm is attributed to

its approach in evaluating different actions. The convergence-

based algorithm evaluates the available actions based on their

convergent values. This gives the source relatively accurate

indications about the values of different state-action pairs,

and enables it to determine and select an optimal policy in

a relatively high-precision pattern.

On the other hand, the ǫ-greedy algorithm evaluates actions

based on the instant values of state-action pairs, especially

in the beginning of the learning process, when the explo-

ration probability is relatively high and the values of different

state-action pairs are unable to converge. Unfortunately, these

instant values might not be the actual or near actual values of

these pairs, which may slow down finding an optimal policy

with actual high discounted return.

B. Comparison in Large Scenario

This part considers the case of large number of states. The

goal is to examine the validity of the proposed algorithms in

the case of large scenarios, where the number of states used

in this part is 858 states. Fig. 3 shows the performance of

the proposed approaches compared with the hasty and ran-

dom algorithms, where finding the optimal policy is difficult.

The discounted returns of the look-ahead, hasty, and random

algorithms take a near-constant pattern all the time. This is

because of using one policy all the time, and the discount

factor that bounds the discounted return to a certain value.

Fig. 3 shows that the look-ahead algorithm outperforms the

other algorithms. This is due to having the statistical knowl-

edge about the channel gain and EH processes, which enables

the source to exploit an optimal policy from the beginning.

It can also be noticed that the convergence-based algorithm
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outperforms the ǫ-greedy algorithm in terms of the speed of

finding an optimal policy, and the quality of learned policies by

each algorithm. This superiority is due to the used approach by

each algorithm for evaluating different actions as explained in

the previous subsection. For the hasty and random approaches,

they do not exploit the available causal knowledge in exploring

and exploiting different policies, which explains the relatively

poor performance of these two approaches.

Using the convergence-based algorithm, it is clear that the

Q-learning outperforms the SARSA insignificantly. Q-learning

learns Q(s, a) by approximating the optimal action-value

function q∗ directly. Fortunately, approximating the optimal

action-value function has improved the performance by

finding an optimal policy in a shorter time compared to

SARSA, even if this improvement is relatively small. On

the other hand, SARSA is more conservative, it improves

its performance using the estimate of the action-value func-

tion under the current policy. Although, SARSA uses a

safer path, but this has slowed down finding an optimal

policy and exploiting it early. Regarding to the adaptive ǫ-

greedy, it can be seen that both Q-learning and SARSA

have approximately the same performance, where approximat-

ing the optimal policy by Q-learning has not improved the

performance.

C. RL Algorithms - Harvested Energy Levels With Equal

Probabilities

This part considers another large scenario. It aims at inves-

tigating the considered RL exploration algorithms when the

EH process is a process with independent and identically

distributed random variables. The set of harvested energy lev-

els is En = {0, 0.05, 0.1, 0.15, 0.2, 0.25} J, each with equal

probability.

The considered exploration algorithms are compared

using Q-learning. For the convergence-based algorithm,

ζ = 4 and τ has values that are changing between

0.2T and 0.6T. The adaptive ǫ-greedy algorithm uses

exploration probability changing between ǫ = exp(0.1i)
and ǫ = exp(0.0001i).

Fig. 4 shows the superiority of the convergence-based

algorithm over hasty and ǫ-greedy algorithms. It can also

be noticed that the best performance of the adaptive ǫ-

greedy approximates the performance of the hasty pol-

icy, while the hasty outperforms the adaptive ǫ-greedy

for the remaining values of ǫ. The superiority of the

convergence-based algorithm and the poor performance of

the adaptive ǫ-greedy algorithm are explained in the previous

subsections.

D. Effect of the τ in Convergence-Based Algorithm

This experiment investigates the effect of the exploration

time threshold τ on the performance of the convergence-based

algorithm. In this experiment, ζ is set to 4.

Fig. 5 shows the discounted return versus time. When

τ = 0, the performance takes a near constant pattern from

the beginning, which is due to exploiting one policy all the

Fig. 4. The discounted return Gt versus time t for different RL exploration
algorithms.

Fig. 5. The discounted return Gt versus time t for different values of the τ .

time (i.e., there is no exploration). For the remaining val-

ues of τ , the discounted returns increase with experience.

Then, they take near-constant shapes, which is due to the dis-

count factor effect, and the inability to improve the policy any

more.

Fig. 5 also shows that the discounted returns increase as τ
increases up to a value, then saturation occurs. As the value

of this threshold increases, the opportunity of exploring more

policies increases, which also increases the opportunity of find-

ing a good policy that increases the discounted return. After

a certain time, the effect of increasing τ on the performance

diminishes, which is due to assigning values for τ that are big-

ger than the required time for exploring all available actions. In

this case, the source will be forced to exploit the best learned

policy once it has evaluated all available actions regardless the

value of τ .
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Fig. 6. The discounted return Gt versus time t for different values of the ζ.

E. Effect of the ζ in Convergence-Based Algorithm

In this experiment, the effect of ζ on the performance of

the convergence-based algorithm was studied. The value of τ
is set to be 0.8T.

Fig. 6 shows the influence of the experience on the dis-

counted return at different values of ζ. As shown, for ζ = 0,

the performance has a near constant shape from the begin-

ning, since there is no exploration. In this experiment it

is difficult to achieve convergence with zero error, which

prevents exploration. For the remaining values of ζ, the

performance is improved with experience. Then, the dis-

counted returns take near-constant patterns, since the source

is unable to improve the policy any more, and the dis-

count factor which bounds the return. This figure also

shows that the best performance is achieved when ζ has a

value of 4.

It can also be noticed that the discounted return increases

as the convergence error increases up to a certain value,

and then starts decreasing. This is due to the fact that

increasing the convergence error increases the opportunity

of exploration, which improves the performance up to a

certain value of ζ. After that, the performance starts to

degrade, which is due to inaccurate evaluation of various

actions.

F. Effect of the ǫ in ǫ-Greedy Algorithm

This part discusses the effect of ǫ on the performance of

the ǫ-greedy algorithm.

Fig. 7 investigates the performance of the adaptive ǫ-greedy

algorithm using different scenarios (ǫ = 0, ǫ = e−0.1i ,

ǫ = e−0.01i , ǫ = e−0.001i , ǫ = e−0.0001i , and ǫ = 1), where

i is the time slot number in an episode. This figure shows that

the discounted return when ǫ = 0 remains constant approx-

imately from the beginning, since there is no exploration.

For the remaining values of ǫ, the performance is enhanced

with experience, then, the discounted returns maintain near-

constant shapes due to the inability to improve the learned

Fig. 7. The discounted return Gt versus time t for different values of the ǫ.

policy, and bounding the return by the discount factor. It can be

noticed that the ǫ = e−0.001i scenario outperforms the other

scenarios.

This figure shows that slowing the decay of ǫ improves

the performance up to a certain value, and then starts to

degrade the performance. Decelerating decay of the ǫ means

increasing the exploration probability at the beginning, which

gives the source more opportunity to explore more policies

and find a good policy. Increasing the exploration proba-

bility improves the performance up to a certain value, but

then it starts to degrade the performance, which is due to

slowing down exploiting the best learned policy from the

exploration.

VIII. CONCLUSION

In this paper, two different scenarios for a realistic energy

harvesting communication system were investigated. The first

one assumes the availability of statistical knowledge about

the channel gain and EH processes. On the other hand, the

system in the second scenario does not have that knowledge.

The source is equipped with an infinite data buffer to carry

data packets and finite battery to store the harvested energy.

We formulated the problem of maximizing the cumulative

discounted received data as an MDP. For the first scenario,

a look-ahead algorithm was designed to solve the problem

efficiently by exploiting the availability of the transition prob-

abilities between states. To optimize the performance of the

system in the second scenario, RL was used. The results

showed the effectiveness of the look-ahead algorithm when

the statistical knowledge is available, even when the num-

ber of states and action is large. This work also showed the

effectiveness of RL for optimizing the system performance

in the case of unavailability of that knowledge. Two differ-

ent exploration algorithms for RL were used, which are the

convergence-based and ǫ-greedy algorithms. It was noticed

that the convergence-based algorithm outperforms the other

one. Finally, we discussed the effects of the parameters of
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each algorithm on the system performance. As a future work,

function approximation and neural networks can be used along

with RL to consider the case of having continuous state and

action spaces.
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